Optical dipole mirror for cold Rubidium atoms
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ABSTRACT GENERAL INTRODUCTION POTENTIALS

One of the methods of collecting a great number (of at least a few L . : : : - _
: . . . principle of the optical dipole mirror: multilevel structure and van der Waals potential included:

thousands) of neutral atoms in the gas phase in the vicinity of the solid state v
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surface is to use the dipole magnet_lc [1] gnd optlcal _[2] tr_aps. The main A \ —din K ~toms are reflected close to the dielectric
component of the latter ones are elastic and inelastic optical dipole mirrors. In F 7/ surface in the evanescent wave field - _
this work we present the experimental realization of the dipol mirror for cold N //V” thanks to repulsive dipole force Rb D1 line
Rubidium atoms. The dipole force acting on atoms moving in the area of blue-

. . N\
detuned evanescent wave was used. The constructed dipole mirror have D'\\es = 362 MHZ
several advantages: great repeatability of its parameters, easy regulation of
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A
the initial height of the atomic cloud above the dielectric surface, it has y X

efficient detection system of reflected atoms, it allows the observation of both evanescent wave intensity: dipole potential:
elastically and inelastically reflected atoms, it is relatively simple and cheap. 42 y - P 3202 T 4,05 d = 800 MHz
The described setup is also the first and most important step towards I(F) = Iyexp (_“r? .:-osﬁa) m{ﬂ( _-F_ -_— ) U P(r") = 53 g [(-’) 3,5-E
achieving the gravito-optical surface trap (GOST). This trap allows one not o ' Wo 303
only to reflect atoms but also to trap them and cool at the distance of about 1 ~ 500 nm 2,5
mm from the dielectric surface. penetration depth 2,0
1,5

101 | : ¢
H I STO RY 1 | mechanical energy of the atom
exemplary potential for a two-level atom 0,51 =9 ' in rest, falling from the height z,

1982 — R.J. Cook and R.K. Hill proposed for the first time the elastic dipole in the evanescent wave and gravitational field: 0’00:0 T 07 03 04 05 06 07 08 05 10
mirror for neutral atoms based on blue detuned evanescent wave 85 o o
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1988 — first experimental realization of optical dipole mirror for thermal atomic (z)=Ue  +mgz ool |

beam [3] where: 0,06

: L : , U, =3 mKd=0.3mm 0,04 di 3 F)\g
1990 - firstrealization for atoms falling from a magneto-optical trap [4] | Lm =85 au o] | U(z) [107 ] USSP —

m = £3 without vdW potential

steep potential
SO we can have
great repulsive force!

potential Ugip/ (hI')
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1995 — inelastic optical dipole mirrors are proposed [5] | .. 000 \ 16 m2c
| 00214z,
1995 — first demonstration of inelastic reflection for thermal atomic beam [6] ' 3. 0,000 0,002 0,004 0,006 0,008 0,010
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EW intensity
1997 — gravito-optical surface trap (GOST) was constructed. Temperature as

low as 3 mK was achieved thanks to subsequent inelastic reflections [ 7]

potential

, , : : : : U() [10*J] n? — 1 1 ’ . n — index of refraction
2004 — two dimensional BEC was achieved thanks to applying evaporative UvdW — - a,— Bohr radius

/
cooling in so called microtrap based on GOST [8] \0oJ 02 04 06 08 10 n? + 1 64?1‘60
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EXPER'MENTAL SETUP — LASER FREQUENCY STABILIZATION 85 .
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number of layers: 4
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reaches the surface
in free falling * —@—

photon scattering may be useful...

exposure probabilities

S — cooling laser B — magnetic field
R — repumping laser EW — evanescent wave
d — EW detuning

PHOTON SCATTERING  smail o potenta, e

but little photon scattering

cold atoms 32 ms after elastic reflection:

fn b 0 e 3 2 fin
d = 350 MHz d = 500 MHz d = 900 MHz d = 1850 MHz

+ deep potential but great photon scattering: atoms may jump
to another state and feel only weak repulsive or even attractive potential

the width of the white rectangle in the figure 1 corresponds
to the gaussian (e'l) diameter of the EW spot

number of scattered photons
per one bounce:
optical mirror parameters: — 3 F2 )\3 2 S

photon scattering rate for the (F,m) sublevel:

sp sp sp i SR et
— > = ['SE dt
EW beam power: 17.4 mW Fm 16 m2he . Pam f am d
F

EW maximal intensity: 180x10° W/m’ _/ | - atoms climb up the high mountain but roll down the small hill...
EW spot mean diameter: 0.39 mm EW detuning in relation
to the F ® F’ transition

critical angle: 41.5° . »
cooling efficiency —
incident angle: 43.0° d = 900 MH o for single succesful AE—]— — 2 AHFS » O 47 d = 900 MHz
enetration depth: 520 nm - i two level approximation: inelastic reflection: la ' D, = 3036 MHz
p pth: d — penetration depth 3 md I’ » 0.3 @ d = 1850 MHz EJ_ 3 6 + AHFS i

o : Sp __
polarization: TM vV — velocity component P A B:UJ— »1.5@ d =350 MHz /

when reaching the surface

some atoms scatter photon before classical turning point...
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