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PACS 37.10.Vz — Mechanical effects of light on atoms, molecules, and ions

PACS 37.10.Gh — Atom traps and guides

PACS 37.90.+j — Other topics in mechanical control of atoms, molecules, and ions

Abstract — We report the transport of ultracold atoms with optical tweezers in the non-adiabatic

regime, i.e. on a time scale on the order of the oscillation period. We have found a set of discrete
transport durations for which the transport is not accompanied by any excitation of the centre
of mass of the cloud after the transport. We show that the residual amplitude of oscillation of
the dipole mode is given by the Fourier transform of the velocity profile imposed to the trap for
the transport. This formalism leads to a simple interpretation of our data and simple methods for
optimizing trapped particles displacement in the non-adiabatic regime.

Copyright © EPLA, 2008

The controlled transport of ultracold atoms is crucial
for the development of experiments in atomic physics.
It makes possible the delivery of cold atoms in a region
free of the laser beams and coils of the magneto-optical
trap (MOT), allowing a better optical and mechanical
access. It also opens new perspectives for probing a
surface or any material structure, and for loading atoms
in optical lattices, or for positioning atoms in a high-@Q
optical cavity [1,2]. In addition it opens the way to a new
generation of experimental setups where ultracold clouds
of atoms would be delivered on demand on a variety of
different experimental platforms separated by macroscopic
distances. This is standard for charged particles and
energetic neutral particles, while it has only been recently
accomplished with ultracold atoms by moving slowly
optical tweezers [3]. Transport of cold packets of atoms
is also of importance as a step towards the continuous
production of a Bose-Einstein condensate [4,5].

Macroscopic transport of cold atoms has been demon-
strated using several different configurations. One can
move mechanically a pair of coils [6,7] or use a set of coils
with time-varying currents [8]. Such quadrupolar traps
are non-harmonic. Alternatively one can use traps with a
harmonic shape near their bottom, such as Ioffe-Pritchard
traps [5,9-11], optical tweezers as recently demonstrated
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on Bose-condensed clouds [4] or 1D optical lattices [12,13].
The harmonic potential is of particular interest since the
centre-of-mass motion (also referred to as Kohn’s mode)
is not coupled to the other degrees of freedom, and this is
true both in the presence and in the absence of interac-
tions between atoms and both for classical and quantum
physics. However all these studies have been performed in
the adiabatic regime where the duration of the transport
is long with respect to the typical oscillation period of the
trapped atoms. This is because a lot of energy is given
to the trapped cloud when it is transported in the non-
adiabatic regime, giving rise to heating and to a strong
excitation of the dipole mode. This, in turn, can result
in atom losses due to the finite depth of the trap. While
microtraps can have high-oscillation frequencies, the traps
allowing to transport a large number of atoms are not very
steep and thus an adiabatic transport is quite long, limit-
ing the repetition rate of the experiments performed. To
our knowledge, the issue of an optimal transport beyond
this limit has only been addressed numerically for ions in
Paul traps [14].

In this letter we report the transport of a cold atom
cloud in the non-adiabatic regime with a high degree of
control by means of optical tweezers with no residual
excitation of the dipole mode of oscillation, moderate
heating and no losses. We also provide a simple theoretical
model which permits to work out a new picture of the
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Fig. 1: Sketch of the main part of the experimental setup (not
to scale) —see text.

transport. The residual amplitude of oscillation of the
cloud can be expressed as the Fourier transform of the
velocity profile imposed to the trap, yielding a simple
interpretation of our data and providing simple methods
for optimizing trapped particles displacement.

Our optical tweezers are generated by an ytterbium fibre
laser (IPG LASER, model YLR-300-LP) with a central
wavelength of 1072nm. The wavelength of the laser is
larger than the atomic resonance wavelengths of 780.24 nm
and 794.98 nm of the rubidium 87 atoms, and thus, atoms
are attracted to the region of maximum intensity [15]. The
beam is focused inside the vacuum chamber by a lens with
a 802mm focal length mounted on a translation stage
(Newport linear motor stage, model XMS100), allowing
one to move the optical tweezers longitudinally on a
100 mm range with an absolute repeatability on the order
of a few hundreds of nm (see fig. 1). The resulting waist has
been measured to be 44 pm, corresponding to a Rayleigh
length of 5.7 mm.

The optical tweezers are loaded from an elongated
MOT. The cigar shape of the MOT results from the
two-dimensional magnetic gradients: (0,5, —5) G/cm. To
maximize the loading of atoms into the dipole beam, the
optical tweezers are superimposed on the MOT along its
long axis. In addition, we favorize the selection of atoms
in the hyperfine low level 55 /5, F'=1 by removing the
repump light in the overlapping region similarly to the
dark MOT technique [16].

The dipole trapping beam is turned on at a power of
80 W during the 500 ms loading time of the MOT. Then,
we increase the MOT detuning in 5 ms from —3I" to —7.7T,
I" being the natural frequency width of the excited state.
This procedure improves significantly the optical tweezers
loading efficiency. Then, the magnetic field and repumping
light are switched off to optically depump atoms to the
F =1 ground sublevel. Finally all the remaining MOT
beams are turned off. The number of atoms in the optical
tweezers is as high as 3 x 107, corresponding to a peak
atomic density of 5x 10*?at/cm®. These numbers are
measured 50 ms after switching off the MOT beams, so
a first evaporation has already occurred on this time scale
since the collision rate is larger than 500s~1.

In order to transport a cloud in the non-adiabatic regime
without spilling atoms, one has to maximize the parameter

n=Up/kpsT which is the ratio between the potential well
depth U, and the average potential energy k7. We
proceed in two steps. First, we cool down the sample by
forced evaporation by lowering the beam power P. During
this whole phase 7 remains roughly constant. Second,
we adiabatically re-compress the trap by increasing the
beam power P. In this process, Uy scales as P and the
temperature T scales as P'/2, and thus the dimensionless
parameter 7 increases as P'/2. This way we can control
the value of n for a given power P after compression.

Two different atom cloud preparation schemes were
used. In the first one, referred to scheme 1, the initial
trapping beam power is lowered in two linear ramps
by a factor of 23 within 600ms. The atomic cloud
temperature before re-compression is 27+1.0pK. In
scheme 2 the beam power is decreased in four linear
ramps by a factor of 170 within 3300ms, resulting in
a 3.7£0.5uK temperature of the atomic packet. The
trapping beam power after compression and before trans-
porting the atoms reaches 37 W (respectively, 42 W), and
the temperature of the transported packets is 160 + 11 uK
(respectively, 43 +2 uK) for scheme 1 (respectively, 2).
The n parameter is thus equal to 13 for scheme 1 and
50 for scheme 2. The initial number of atoms before the
transport is 2.1 x 10° (respectively, 5.7 x 10%) for scheme 1
(respectively, 2).

The radial angular frequencies of the recompressed
trap were inferred from a parametric heating experiment,
and are on the order of 2kHz for both schemes. The
longitudinal angular frequency was measured by exam-
ining the cloud dipole mode oscillations. We find wg=
27 x (8.14+0.3) Hz (respectively, wp =27 x (8.9+0.3) Hz)
for the scheme 1 (respectively, 2).

The transport experiment has been carried out in
a single vacuum chamber. We consequently imposed
a “round trip” displacement to the optical tweezers,
going from the MOT location A to a point B placed at
d=22.5mm from it along the beam direction, and back
to A (see fig. 2a). The velocity of the trap as a function
of time is deliberately chosen as a succession of constant
acceleration for the sake of simplicity. First, the trap is
accelerated at a constant rate a during a time 7T'/4, decel-
erated at the opposite rate —a during 7'/2, and finally
re-accelerated at a to stop after a total transport time T'.
This simple velocity profile will allow us to exhibit the
main features of non-adiabatic transport, and hence does
not restrict the generality of the conclusions that we will
draw from our experiments. The distance of transport 2d
is simply related to the acceleration a and the transport
duration T by 2d=aT?/8. In practice, the different
transport durations that have been used were obtained
by varying the acceleration a from 0.2 to 3.3ms™2, in
order to investigate the non-adiabatic regime.

The transport is accompanied by a moderate heating of
the cloud (on the order of 40 uK for both schemes) and no
detectable atom loss as soon as the transport duration
is longer than two periods of oscillation. For shorter
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Fig. 2: (Colour on-line) (a) Velocity profile imposed to the trap
to do the back and forth transport between A and B separated
by d =22.5mm. (b) (respectively, (c)) The measured amplitude
A of the centre-of-mass dipole oscillation for the conditions of
scheme 1 (respectively, 2), see text. The dashed line is the
theoretical prediction of eq. (4) with the measured angular
frequency wo of the trap.

times the acceleration is sufficient to spill atoms out of
the tweezers when 1 =13. The increase of temperature
is attributed to the transverse shaking of the cloud
that occurs during the transport. To circumvent this
limitation, we plan to use for future experiments an air-
bearing translation stage instead of the standard linear
rail-guided translation stage we are currently using. Note
that the photon scattering rate remains relatively small for
both schemes (we evaluate the photon-scattering—induced
heating rate to be 3 uK/s).

To infer the residual amplitude of oscillation A (see
fig. 2b and c), we measure the centre-of-mass oscillations
after the transport by recording a set of typically 30 images
separated from one another by 10 ms after the transport.
The images are acquired using a standard absorption
imaging technique on a CCD camera. Since the imaging
process is destructive, the whole experimental sequence
has to be redone for each picture. The position of the

centre of mass of the cloud as a function of time is inferred
from a 2D Gaussian fit. We deduce the amplitude of
oscillation by fitting the first period of this position data
(see inset of fig. 2b) with a sine function.

For both schemes the variation of the amplitude as
a function of the transport duration is non-monotonic.
There are specific discrete transport durations for which
the measured amplitude of oscillation is zero within our
error bars (see second inset of fig. 2b). This shows our
ability to move a packet of atoms in the non-adiabatic
regime (i.e. in a time on the order of a few oscillation
periods) with no excitation of the dipole mode of oscil-
lation after the transport. Note that the dipole mode of
oscillation is excited during the transport process since
the transport is non-adiabatic. We point out that after
such an optimal transport over a macroscopic distance, the
number of atoms and temperature of the remaining cloud
are compatible with the evaporative cooling to degener-
acy in a crossed dipole trap geometry. Indeed we have
been able to achieve Bose-Einstein condensation with such
clouds by crossing vertically a 200 pm waist beam with our
tweezers and ramping down both powers.

To interpret our data a simple one-dimensional analyt-
ical model is sufficient and provides a good quantitative
understanding of the physics of the centre-of-mass motion
of a packet of atoms transported by a moving harmonic
potential. A similar formalism has been developed to
transport ions in segmented Paul trap arrays [17]. We
consider an atomic packet initially at rest in a harmonic
trap of angular frequency wgy. The trap position is given
by the position of its centre x.(t). As mentioned earlier,
the movement of the centre of mass is decoupled from the
other degrees of freedom and hence can be treated as a
single particle in the harmonic trap. For a particle of mass
m, the imposed motion of the trap can be considered as
an extra force whose expression is —ma.(t) in the frame
attached to the trap. According to Newton’s law, the time-
dependent position z(t) of the centre of mass obeys the
relation

1 [t
2(t) = mo(t) + — / at’ sinfwo(t' — Dlie() . (1)
wo Jo
The amplitude A of the oscillatory motion after transport
is readily inferred from eq. (1), and corresponds to the
Fourier transform of the velocity profile of the trap’s centre
position

A=|F[@c](wo)l,
with F[f] = [T f(t)e~t dt.

—00

In the case of a one-way transport over a distance
d=aT?/4 of duration T with the simple velocity profile
shown in fig. 3a (solid line), the final amplitude of

oscillation is plotted in fig. 3b (solid line) and reads
A= d sinc?(wo T/4)

(2)

3)

where the sinc(x) function is defined as sin(z)/z. It
exhibits a series of discrete optimal transport durations
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Fig. 3: (Colour on-line). (a) Two different velocity profiles to
go from a point A to a point B separated by a distance d:
the triangular profile (solid line) and the 4-term Blackman-
Harris profile [18] (dashed line). (b) The residual amplitude
A of oscillation of the centre of mass after transport for these
velocity profiles (see text). An optimal transport (A=0) can
be performed in two periods of oscillation in the triangle case,
and in any time greater than 47, in the Blackman case.

T,, = 2nTy, where Ty =27 /wy is the period of oscillation
of the trap, and n a non-zero integer, for which the
amplitude after the transport vanishes. They correspond
to a transport without residual dipole mode excitation.
We find, for this specific example, that it is possible to
move optimally a packet of atoms on any distance d
on a time as short as twice the oscillation period. This
is to be contrasted with the transport in the adiabatic
limit (wp T > 1) for which the transport’s duration is long
compared to Ty = 27 /wy. We emphasize that these optimal
strategies are robust against experimental uncertainties:
indeed an error of 10% on the transport duration 2T
would lead to a residual amplitude of oscillation less than
the one obtained when transporting ten times slower in a
non-optimal manner (in 217p).

In the case of a “round trip”, the amplitude of oscillation
after a transport of duration T reads

A =2d sinc?(wo T/8)|sin(wo T/4)]| . (4)
As expected, we find optimal transport duration corre-
sponding to a cloud stopped after the forward motion
A — B. Indeed the backward motion B — A is then opti-
mal too, and we recover the sinc? factor obtained for the
one-way transport. In addition we obtain another set of
zeros (due to the [sin| factor) for which the cloud is not at
rest after the forward move. In this case, the energy given
to the cloud in the first half of the motion is removed
during the second part due to the time symmetry of the
trajectory around T'/2.

The dashed line in fig. 2a is given by eq. (4) rescaled
by a factor of 0.6 and is in good agreement with our
experimental data. The measured amplitude of oscillation
is smaller than the predicted one because in our exper-
iments the oscillation of the centre of mass is damped
when its amplitude is large (see first inset of fig. 2b).

This is due to the fact that the cloud explores a potential
region far away from the minimum where non-linearities
play an increasing role. In this instance, particles have
different periods of oscillation depending on their energy,
and the observed damping results from the average taken
over this spectrum of oscillation frequencies involved in
a transport experiment. It means that, strictly speaking,
it is impossible to transport in an optimal manner a
packet of atoms in the non-adiabatic regime as soon as
the potential exhibits non-linearities.

Two strategies can be used to avoid this effect. First,
a longer transport time whilst remaining in the non-
adiabatic regime minimizes this problem, because the
cloud then remains close to the harmonic bottom of the
trap. For scheme 1, we indeed observe that the damping
is negligible for longer transport duration.

Alternatively, one can use a larger n parameter.
The involved spectrum of oscillation frequency is then
narrower, resulting in partial damping suppression. This
is exemplified by the data of scheme 2 represented
in fig. 2¢ for which =50 (to be compared to n=13
for scheme 1), where the dashed line represents the
theoretical prediction of eq. (4) without any adjust-
ment on the amplitude. For this sufficiently large 7, we
recover the expected contrast of the amplitude curve (see
figs. 2b and c). The simple theoretical framework that
we have developed is then in very good agreement with
our data.

The occurrence of optimal transport durations is a
general feature of the transport in the non-adiabatic
regime with a harmonic trap. They can be adjusted at will
by choosing a proper velocity profile for the displacement
of the trap. The duration of an optimal transport can in
principle be reduced to very short time in comparison to
the period of oscillation. However for practical reasons,
including the finite depth of the trapping potential, there
is always a limit on the acceleration one can use and thus
on the minimum transportation time.

The Fourier-transform formulation (eq. (2)) of the
transport allows for many enlightening analogies. For
instance, the modulus square of the amplitude A? is
mathematically identical to the intensity profile for the
far-field Fraunhofer diffraction pattern of an object with
a transmittance having the same shape as the velocity
profile for the transport. An optimal transport condition is
equivalent to a dark fringe in the corresponding diffraction
pattern. The “round trip” A — B — A (see fig. 2a) consid-
ered in our experiment is made of two triangular velocity
profiles corresponding to a one-way transport A — B and
another in the opposite direction B — A. In optics, we
know that the repetition of a pattern in the transmittance
yields interferences. We can thus re-interpret formula (4)
where the factor term sinc®(wyT/8) plays the role of a
diffraction pattern for a one way transport, and the factor
term |sin(wp T'/4)| accounts for “interferences” between
the two one-way velocity profiles. The optimization of
the conditions under which a non-adiabatic transport
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should be carried out with a “harmonic” optical tweezers
is then equivalent to apodization problems in optics,
which is a thoroughly studied problem [19]. We further
emphasize that the finite width of the spectrum of
periods of oscillation due to non-linearities involved in
a non-adiabatic transport is reminiscent of the finite
temporal coherence of the illuminating source in an
optical diffraction experiment. In the case of transport
the width of this spectrum depends on the duration of
the transport. In optics the spectrum width is an intrinsic
property of the illuminating source and therefore affects
globally the whole diffraction pattern.

Another interesting analogy based on the Fourier trans-
form formulation lies in the minimization of side lobes of
the spectrum when choosing a window to perform spec-
tral analysis, or when choosing the time shape of a Raman
pulse [18,20]. For instance, the use of a 4-term Blackman-
Harris shape for the velocity profile! should ensure a
robust optimal transport as soon as its duration is bigger
than 47} (see fig. 3, dashed lines), yielding a very robust
optimal transport.

In conclusion, we have demonstrated the implemen-
tation of an optimal transport with optical tweezers in
the non-adiabatic regime along with a simple theoretical
formalism. The results presented in this letter are of inter-
est not only for cold atoms experiments to increase their
repeating rate, but also to any experiment where trans-
port using harmonic traps is achievable like, for instance,
trapped-ions experiments.
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13c(t) = 0.35875 — 0.48829 cos(27t/T) + 0.14128 cos(4rt/T) —
0.01168 cos(6t/T).
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